| 1. | Global bifurcation and chaos motion of mises truss 桁架结构的全局分岔和混沌运动 |
| 2. | Methods using the decoupling and global bifurcation theory 方法解耦和全局分歧理论等。 |
| 3. | ( 4 ) the global bifurcations and chaotic dynamics are investigated when the rotor - ambs system has the time - varying stiffness ( 4 )研究了电磁轴承-转子系统在变刚度情况下的全局分叉和混沌动力学。 |
| 4. | There are abundant and complicated dynamical behaviors in the rotor - ambs system , such as the local and global bifurcations and the chaotic dynamics 在这类系统中含有极其丰富和复杂的动力学行为,如分叉、分形和混沌动力学等。 |
| 5. | There are abundant and complicated dynamical behaviors in the inverted pendulum system , such as the local and global bifurcations and the chaotic dynamics 在这类系统中含有极其丰富和复杂的动力学行为,如分叉、分形和混沌动力学等。 |
| 6. | The global bifurcation analysis of the nonlinear nonplanar cantilever is given by a global perturbation method developed by kovacic and wiggins . it is found that the nonlinear nonplanar cantilever can undergo the hopf bifurcation , heteroclinic bifurcations and silnikov - type homoclinic orbit to saddle focus , which means that the nonlinear nonplanar cantilever can give rise to the chaotic motion in the sense of smale horseshoes 利用kovacic和wiggins的全局摄动法对非线性非平面运动悬臂梁进行了全局动力学分析,发现系统存在hopf分叉和异宿分叉,并证明系统有silnikov型鞍焦点型同宿轨道,可以产生smale马蹄意义下的混沌。 |
| 7. | Based on the normal form obtained above , a global perturbation method is utilized to give the analysis for the global bifurcations and chaotic dynamics of the rotor - ambs system . the global bifurcations analysis indicates that there exist the heteroclinic bifurcations and the silnikov - type homoclinic orbit in the averaged equations 利用全局摄动法研究了电磁轴承-转子系统的全局分叉和混沌动力学,利用数值模拟方法分别对平均方程和原方程进行了分析,得到了的描述系统混沌运动的相图和波形图,从而验证了理论结果的正确性。 |